Search results for "conformal geometry"
showing 10 items of 10 documents
The geometry of canal surfaces and the length of curves in de Sitter space
2011
Abstract We find the minimal value of the length in de Sitter space of closed space-like curves with non-vanishing non-space-like geodesic curvature vector. These curves are in correspondence with closed almost-regular canal surfaces, and their length is a natural magnitude in conformal geometry. As an application, we get a lower bound for the total conformal torsion of closed space curves.
Application of spaces of subspheres to conformal invariants of curves and canal surfaces
2013
Osculating spheres to a family of curves.
2021
The authors study the extrinsic conformal geometry of space forms involving pencils of circles or spheres. They consider curves orthogonal to a foliation of an open set of a 3-sphere by spheres and prove that the osculating spheres to the curves at points of a leaf form a pencil. They first prove the analogous result in a lower-dimensional case, that is, foliations of the 2-dimensional sphere and their orthogonal foliations. The 3-dimensional result, that is, the result for a foliation of (an open subset of) the 3-dimensional sphere by 2-dimensional spheres, is obtained using the de Sitter space, which is a model for the set of oriented spheres of the 3-dimensional sphere.
Three physical quantum manifolds from the conformal group
1987
Local Gauge Conditions for Ellipticity in Conformal Geometry
2013
In this article we introduce local gauge conditions under which many curvature tensors appearing in conformal geometry, such as the Weyl, Cotton, Bach, and Fefferman-Graham obstruction tensors, become elliptic operators. The gauge conditions amount to fixing an $n$-harmonic coordinate system and normalizing the determinant of the metric. We also give corresponding elliptic regularity results and characterizations of local conformal flatness in low regularity settings.
Quasilines and conformal mappings
1981
Three viewpoints on the integral geometry of foliations
1999
We deal with three different problems of the multidimensional integral geometry of foliations. First, we establish asymptotic formulas for integrals of powers of curvature of foliations obtained by intersecting a foliation by affine planes. Then we prove an integral formula for surfaces of contact of an affine hyperplane with a foliation. Finally, we obtain a conformally invariant integral-geometric formula for a foliation in three-dimensional space.
Bounded geometry, growth and topology
2010
We characterize functions which are growth types of Riemannian manifolds of bounded geometry.
Conformal curvatures of curves in
2001
Abstract We define a complete set of conformal invariants for pairs of spheres in and obtain from these the expressions of the conformal curvatures of curves in (n + 1)-space in terms of the Euclidean invariants.
Darboux curves on surfaces I
2017
International audience; In 1872, G. Darboux defined a family of curves on surfaces of $\mathbb{R}^3$ which are preserved by the action of the Mobius group and share many properties with geodesics. Here, we characterize these curves under the view point of Lorentz geometry and prove that they are geodesics in a 3-dimensional sub-variety of a quadric $\Lambda^4$ contained in the 5-dimensional Lorentz space $\mathbb{R}^5_1$ naturally associated to the surface. We construct a new conformal object: the Darboux plane-field $\mathcal{D}$ and give a condition depending on the conformal principal curvatures of the surface which guarantees its integrability. We show that $\mathcal{D}$ is integrable w…